Smc3 dosage regulates B cell transit through germinal centers and restricts their malignant transformation
2021 Ceyda Durmaz 2021 Ceyda Durmaz

Smc3 dosage regulates B cell transit through germinal centers and restricts their malignant transformation

During the germinal center (GC) reaction, B cells undergo extensive redistribution of cohesin complex and three-dimensional reorganization of their genomes. Yet, the significance of cohesin and architectural programming in the humoral immune response is unknown. Herein we report that homozygous deletion of Smc3, encoding the cohesin ATPase subunit, abrogated GC formation, while, in marked contrast, Smc3 haploinsufficiency resulted in GC hyperplasia, skewing of GC polarity and impaired plasma cell (PC) differentiation. Genome-wide chromosomal conformation and transcriptional profiling revealed defects in GC B cell terminal differentiation programs controlled by the lymphoma epigenetic tumor suppressors Tet2 and Kmt2d and failure of Smc3-haploinsufficient GC B cells to switch from B cell- to PC-defining transcription factors. Smc3 haploinsufficiency preferentially impaired the connectivity of enhancer elements controlling various lymphoma tumor suppressor genes, and, accordingly, Smc3 haploinsufficiency accelerated lymphomagenesis in mice with constitutive Bcl6 expression. Collectively, our data indicate a dose-dependent function for cohesin in humoral immunity to facilitate the B cell to PC phenotypic switch while restricting malignant transformation.

Journal: Nature Immunology PMID: 33432228 DOI: 10.1038/s41590-020-00827-8

Read More
Somatic Mutations Drive Specific, but Reversible, Epigenetic Heterogeneity States in AML
2021 Ceyda Durmaz 2021 Ceyda Durmaz

Somatic Mutations Drive Specific, but Reversible, Epigenetic Heterogeneity States in AML

Epigenetic allele diversity is linked to inferior prognosis in acute myeloid leukemia (AML). However, the source of epiallele heterogeneity in AML is unknown. Herein we analyzed epiallele diversity in a genetically and clinically annotated AML cohort. Notably, AML driver mutations linked to transcription factors and favorable outcome are associated with epigenetic destabilization in a defined set of susceptible loci. In contrast, AML subtypes linked to inferior prognosis manifest greater abundance and highly stochastic epiallele patterning. We report an epiallele outcome classifier supporting the link between epigenetic diversity and treatment failure. Mouse models with TET2 or IDH2 mutations show that epiallele diversity is especially strongly induced by IDH mutations, precedes transformation to AML, and is enhanced by cooperation between somatic mutations. Furthermore, epiallele complexity was partially reversed by epigenetic therapies in AML driven by TET2/IDH2, suggesting that epigenetic therapy might function in part by reducing population complexity and fitness of AMLs.

Journal: Cancer Discovery PMID: 32938585 DOI: 10.1158/2159-8290.CD-19-0897

Read More
Rational Targeting of Cooperating Layers of the Epigenome Yields Enhanced Therapeutic Efficacy against AML
2021 Ceyda Durmaz 2021 Ceyda Durmaz

Rational Targeting of Cooperating Layers of the Epigenome Yields Enhanced Therapeutic Efficacy against AML

Disruption of epigenetic regulation is a hallmark of acute myeloid leukemia (AML), but epigenetic therapy is complicated by the complexity of the epigenome. Herein, we developed a long-term primary AML ex vivo platform to determine whether targeting different epigenetic layers with 5-azacytidine and LSD1 inhibitors would yield improved efficacy. This combination was most effective in TET2mut AML, where it extinguished leukemia stem cells and particularly induced genes with both LSD1-bound enhancers and cytosine-methylated promoters. Functional studies indicated that derepression of genes such as GATA2 contributes to drug efficacy. Mechanistically, combination therapy increased enhancer–promoter looping and chromatin-activating marks at the GATA2 locus. CRISPRi of the LSD1-bound enhancer in patient-derived TET2mut AML was associated with dampening of therapeutic GATA2 induction. TET2 knockdown in human hematopoietic stem/progenitor cells induced loss of enhancer 5-hydroxymethylation and facilitated LSD1-mediated enhancer inactivation. Our data provide a basis for rational targeting of cooperating aberrant promoter and enhancer epigenetic marks driven by mutant epigenetic modifiers.

Journal: Cancer Discovery PMID: 31076479 DOI: 10.1158/2159-8290.CD-19-0106

Read More